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Hypothesis testing (Part II): Inference from means

ABHAYA INDRAYAN, PIYUSH GUPTA

INTRODUCTION
The focus of this article is on quantitative data that are generally
summarized in terms of mean. Mean is a statistical tool that
depends on the pattern of distribution of values in the target
population. Thus, forms such as Gaussian distribution are espe-
cially important to draw inference from sample means.

The mean of any variable differs from sample-to-sample due to
inter-individual variability. This has been discussed previously. I
If the mean level of free thyroxine (T4) is 0.62 ng/dl in a sample
of 18 children with thalassaemia major, can it be concluded that
it is lower than the minimal normal 0.7 ng/dl? How can one be
confi-dent that another sample of such children will not give a
mean higher than the lower limit of normal? If the mean T4level
in a sample of thalassaemic boys is 0.65 ng/dl and in a sample of
girls 0.56 ng/dl, can it be concluded that the T41evel is affected by
the gender of the children? If these children are divided into
different groups by growth pattern (normal, slightly retarded,
moderately retarded and severely retarded) and a difference of
thyroid function parameters is observed, can it be confidently
stated that this difference would persist in repeated samples? Or,
how can we conclude that this difference is genuinely present in
such subjects in the target population and is not a chance occur-
rence in the sample? A host of questions arise pertaining to the
uncertainties inherent in means of samples. Most of these can be
satisfactorily answered by the application of appropriate statisti-
cal methods discussed in this article.

COMPARISON OF MEANS IN ONE AND TWO GROUPS
UNDER GAUSSIAN CONDITIONS: STUDENT'S t-TEST

Comparison with a pre-specified mean
Example 1. Suppose the interest Is in finding out whether a ran-
dom sample of 10 patients with chronic diarrhoea have the same
average haemoglobin (Hb) level (say, 13.8gldlwlth SO= 1.672)
as normally seen In healthy people (say 14.6 gldl) in the area. In
this example, the sample mean Is lower than the normal. This
could occur Ifthe sample constitutes people with a lower Hb level.
How can you conclude with reasonable confidence on the basis
of this sample that patients of chronic diarrhoea have a lower Hb
level than the average?

There is only one sample in this example and the comparison
is with a known average in healthy people. It is a one-sample
problem though the comparison is of two means, one found in the
sample and the other known for the healthy population.
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The answer to this problem naturally depends on the magni-
tude of the difference between the sample mean and the known
mean in healthy people. In the example, this difference is
13.8-14.6= -0.8 g/dl. The larger the difference, the greater is the
chance that the patients actually have a lower Hb level. This
magnitude of difference is assessed relative to the expected
variation in means from sample-to-sample. The latter is measured
by the standard error (SE) of mean, which is cr/...Jn. The standard
deviation (SD) o would be rarely known and is replaced by its
estimate s. This replacement changes Gaussian distribution to
Student's t. Thus the criterion for this set-up is

X-J.l
Student's t-test: t 1=__ o_

n- s/..f,;

where J.l 0 is the value of the mean under the null hypothesis Ho'As
explained in our first article, IP-value is the probability of t-value
as much as in the sample or more extreme in favour of HI' The
exact P-value for a particular value of t is provided by most
standard statistical packages. Alternatively, standard probability
tables can be consulted to check whether or not P is less than the
threshold such as 0.05 or 0.0 1.The distribution of t depends on the
degrees of freedom (df). For t in the above equation, df=n-l.

For the above example,
13.8-14.6

~ = _ = -1.51
1.67201--/10

A statistical package gives P(t<-1.51)=0.0827. This Is
more than 0.05. Thus, the chance Ismore than 5% that the null
hypothesis, I.e. Ho= 14.6 gldl, Is true. The difference between
the sample mean 13.8 gldl and the population mean 14.6 g/dl
is not statistically significant. The sample mean 13.8 g/dl could
have arisen due to sampling fluctuation when the sample is from
a population with a mean of 14.6 gldl. Thus, the plausibilityof
the population mean being 14.6gldl Isnot adequately ruled out.
The sample fails to provide sufficient evidence against this null
hypothesis.

Comparison of means of two samples
Consider a situation where two samples are available. These could
be from two groups such as men and women, suffering from
disease A and disease B, of age 20-39 years and age >40 years, or
from one group before and another after treatment. The latter is
called a paired sample set-up. The erythrocytic sedimentation rate
measured twice by two different methods in the same group of
subjects also exemplifies pairing. Pairing also occurs when the
subjects in the two groups are one-to-one matched such as in some
case-control studies. The procedure to calculate the SE of differ-
ence in case of paired samples is different from that in unpaired
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samples. Following the same argument as in the case of a one-
sample set-up, the general form of the criterion in the two-sample
set-up is

mean difference
Student's t = ----------
(two-sample) estimated SE of difference

We explain the procedure below with the help of examples.

Paired sample set-up
Example 2: Given below are the serum albumin levels (gldl) in six
randomly chosen patients of dengue haemorrhagic fever before
and after treatment. Can it be concluded that the mean albumin
level after treatment isdifferent from the mean before treatment?

4.8 4.1 5.3 3.9 4.5 3.8
5.2 4.9 5.2 4.8 4.6 4.4

Before treatment
After treatment
In this case,
differences, d,: _ 0.4 0.8 -0.1 0.9 0.1 0.6
mean difference, d=0.45, and SO of differences, sd=0.3937

Also SE of difference, s/",;n=0.1607. We need to find the
chance of getting a mean difference of 0.45 or larger when the
actual difference in the target population is zero. If this chance is
exceedingly small, say less than 0.05, it can be concluded that the
mean difference is not zero. Now,

0.45
ts = --- = 2.80

0.1607

Since there is no assertion in this case that the albumin level
after treatment will increase or decrease, the alternative hypoth-
esis isH,:p,~p2. For this H" two-tailed probability P( Itl > 2.80)
is needed. For n-1 = 5 df, this is P=0.0 19 from a statistical
software. Since P value is less than 0.05, the null hypothesis is
rejected. It can be deduced with reasonable assurance that the
mean albumin level after treatment is different from the mean
before treatment.

Unpaired samples set-up
Example J: Suppose the idea of measuring serum albumin level
surfaced later and the levels before treatment were not available
in those very patients where post-treatment levels could be
obtained. However, albumin levels before therapy were obtained
later in another sample of six newly admitted patients. Consider
the same data as given in Example 2 but now the observations
belong to 12 different patients in place of pairs of observations
on 6 patients. Now,
mean albumin level in the before-treatment group,

»x
l
=4.40, SOs,=0.5797,

mean albumin level in the after-treatment group,
»x2=4.85,SOS2=0.3209

df=n,+n2-2=6+6-2= 10.

This gives: s2p=0.2195 and t,o=-1.66, where s- pis the pooled
variance.

The probability of getting these samples or more extreme in
favour of H, when Ho is true, is given by P( It I > 1.66). From a
statistical package, P-value is 0.1272, which is large. Thus, the
null hypothesis of equality of means is plausible and cannot be
rejected. The evidence is not strong enough to conclude that the
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mean albumin level after treatment isany different from the mean
before treatment. Note that the same values in a paired set-up give
different results from that in an unpaired set-up.

Cross-over design
The cross-over design economizes on the subjects because the
same subject is used for trial twice. Comparison is within subjects
and therefore more precise. We illustrate a simple method to
analyse data from cross-over experiments.

Example 4: Consider a trial of n = 16 asthma patients who were
randomly divided into two equal groups of 8 each. The first group
received treatment A (say, formoterol) then treatment B (say,
salbutamol), while the second group received treatment Band
then treatment A. We abbreviate them as trA and trB. An
adequate wash-out period was provided before switching treat-
ment so that there was no carry-over effect. The response variable
is forced expiratory volume in one second (FEV,). The data
obtained are given below.

Group I: AB sequence
Subject no. 1 2 3 4 5 6 7 8
FEV, (L/min)
Period 1 (trA) 1.28 1.26 1.60 1.45 1.32 1.20 1.18 1.31
Period 2 (trB) 1.25 1.27 1.47 1.38 1.31 1.18 1.201.27
Group II: BA sequence
Subject no. 9 10 11 12 13 14 15 16
FEV, (L/min)
Period 1 (trA) 1.27 1.49 1.05 1.38 1.43 1.31 1.25 1.20
Period 2 (trB) 1.30 1.57 1.17 1.36 1.49 1.38 1.45 1.20

Step 1: Test for group effect. In this example, the groups
identify the sequence and the group effect is the same as the
sequence effect. If the sequence is not affecting the values,
the mean difference between trA and trB should be the
same in the two groups. Calculate the mean (trA-trB) and
their SO in the two groups separately and then compare
these for equality by the usual two sample r-test as described
for unpaired samples. In this example, t'4 =- t .13. This is
not statistically significant (P > 0.05). Ifthe sequence effect
is present, its reasons should be ascertained and the trial
done again after eliminating those causes. This is not the
case in this example.

Step 2: Test for carry-over effect. If a positive carry-over effect
is present, the values for Period 2 should be consistently
higher than for Period t in both the groups. To test for its
presence, calculate the period differences for this example.

Period differences in Group I (Period t -Period 2)
+0.03 -0.01 +0.13 +0.07 +0.01 +0.02 -0.02 +0.04
Period differences in Group /I (Period t -Perlod 2)
-0.03 -0.08 -0.12 +0.02 -0.06 -0.07 -0.20 0.00

If no carry-over effect is present, the mean of these t 6
differences should be close to zero. The test of the null
hypothesis of no carry-over effect is done by considering
the differences in the two groups together as one sample.
In this example, the Student's t for paired-sample is t,s=
-0.86. One-tail P-value for t=-0.86 at t 5 df (from
probability tables), is greater than 0.05. Thus, there is no
definite evidence to conclude that a carry-over effect is
present.
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Step J: Test for treatment effect. Cross-over design is not a
good strategy when carry-over effect is present. If group
and carry-over effects are not present, the two groups can
be considered together as one. Then the paired r-test can
be applied to the joint sample. In our example, t,S= 3.35.
From the probability table for 15 df, this gives P <0.0 1.
Thus, the treatment difference isstatistically highly significant.

Data from cross-over trials can be analysed more meticulously
by using the analysis of variance (ANOVA) method.'

COMPARISON OF MEANS IN THREE OR MORE GROUPS
UNDER GAUSSIAN CONDITIONS: ANOVA F-TEST
Consider a trial on a new once-a-day hypertensive drug with three
different dosages and a control. The objective is to find whether
different dosages have a differential effect on diastolic blood
pressure. There are four groups in this trial and the comparison
index is the mean reduction in diastolic pressure.

The generic method used for comparing means in three or more
groups is called analysis of variance (ANOVA). The name comes
from the fact that the total variance in all the groups combined is
broken down into components such as within-groups variance
and between-groups variance. Between-groups variance is the
systematic variation occurring due to group differentials. The
residual left after this extraction is considered a random compo-
nent arising due to intrinsic biological variability between indi-
viduals, which is the within-groups variance. If genuine group
differentials are present, then the between-groups variance should
be large relative to the within-groups variance. Thus, the ratio of
these two components of variance can be used as a criterion to find
whether or not the group means are different. Between-groups
variance is kept in the numerator and within-groups in the de-
nominator. The test criterion now used is called F-test (after the
name of the statistician Fisher) or variance ratio.

One-way ANOVA
Consider a study in which plasma amino acid (PAA) ratio for
lysine is calculated in healthy children and in children with Grades
I, II and III malnutrition. This ratio is the difference in PAA
concentration in blood before and after the meal, expressed as
percentage of the amino acid requirement. There are four groups
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in this study. The set-up is called one-way since no further classifica-
tion of subjects, say by age or gender, is sought in this case. Groups
define a factor, in this case grade ofmalnutrition. The 'response' is a
quantitative variable. PAA is a ratio but can still be considered to
follow aGaussian pattern within each group. When other factors are
properly controlled, the difference in PAA ratio among subjects
would either be due to the degree of malnutrition or due to intrinsic
inter-individual variation in the subjects of different groups (Fig. 1).
The former is thebetween-groups variation and the latter is thewithin-
groups variation.

Note that part of the within-groups variation can be due to
factors such as heredity, age, gender, height and weight of the
children but these are assumed as being under control and disre-
garded in this set-up.

If group differences are not really present, the between-groups
variance and the within-groups variance would both arise due to
intrinsic variation alone and both will be nearly equal. Since the
between-groups variance is in the numerator, a value of F substan-
tially more than unity implies that between-groups variation is

•
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FIG 1. A graphical display of within-groups and between-groups
variance (within groups is the difference of individual points
with the respective group-mean, and between-groups is the
difference of group-means with the overall mean)

• The t-test is based on the magnitude of difference and its variation. If the interest is in the proportion of subjects
showing a rise, and not in the magnitude of rise, then use the methods described for proportion."

• The same difference may be statistically significant in a paired set-up but not significant in the unpaired set-up. This
can occur if the difference in the paired set-up is fairly consistent, with each patient serving as his own control. In
the unpaired set-up, the inter-individual variation can be large. A paired set-up with 'before' and 'after' measurements
is usually desirable but in case it is not feasible, close matching of controls with cases simulates pairing.

• Student's t is valid only when means follow a Gaussian pattern. When n is large, the pattern is nearly always
Gaussian due to the central limit theorem. When n is small (say <30), the t-test is valid only if the underlying
distribution is Gaussian. If the underlying distribution is far from Gaussian and n is small, then non-parametric (e.g.
Wilcoxon) tests are used. Some of these are discussed in this article.

• The samples have to be random. Statistical inference is not valid for non-random samples.
• The Student's t-test and other means-based tests can also be carried out on geometric means after taking logarithm

of the values. However, the conclusions will be applicable to log-values and not to the values themselves. Geometric
means are used for multiplicative variables such as antibody titre.

• The t-test is for averages and not for individual values. The conclusion is valid only for the groups. Individuals can
behave in a very unpredictable manner, though they are likely to follow a trend.
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large relative to the within-groups variation. This is an indication that
thegroups are indeed different with respect to themean of the variable
under study.The criterion Fis calculated assuming thenullhypothesis
of equality of means indifferent groups is true.The larger the value of
F, smaller becomes the probability thatHois true. Standard statistical
packages provide corresponding P-value for calculated values of
F and df, so that a decision can be made instantly. Cut-off values of
Ffor levels such as a=O.OSand differentdfs can alsobe obtained from
standardprobability tables.

If n is small, the ANOVA procedure is valid only when the
pattern of distribution of the variable is Gaussian. If the pattern is
far removed from Gaussian, use non-parametric tests.

Two-way ANOVA
Consider a clinical trial in which three doses (including a placebo)
of a drug are given to a group of anaemic boys and girls to assess
the rise in haematocrit (Hct) level. It is suspected that the effec-
tive dose may be different for boys and girls. This differential
response is called interaction. In this example, interaction is likely
between the drug dose and gender.

Two-factor design. The objective of the trial in the above
example is to find the effect of dose, gender and their interaction
on the response (such as percentage rise in Hct level) in anaemic
children following administration of iron tablets. This is called a
two-way ANOVA situation as there are two factors involved, i.e.
the dose and gender. Note that there are three dose-groups of boys
in this trial and another three dose-groups of girls. The researcher
may like to have n= 10 subjects in each of these six groups, making
a total of 60 subjects. To minimize the role of other factors causing
variation, these 60 subjects should be as homogeneous as possible
with respect to all those characteristics (for example, body weight,
type and amount of diet consumed, etc.) that might influence the
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response. Once the eligible subjects are identified, 30 boys and 30
girls need to be randomly allocated to the three dose levels. Such
allocation increases the confidence of asserting that any differ-
ence now occurring is mostly, if not exclusively, due to the factors
under study, namely dose of the drug and gender of the subjects
in this example.

As in the case of a one-way ANOVA, within- and between-
group variances are obtained. Criterion F is calculated separately
for each of the two factors and for their interaction. The
P-value is obtained as usual corresponding to the calculated value
of F. A separate decision for factor 1, factor 2 and the interaction
is made regarding their statistical significance. When the inter-
action is not significant, the factors are called additive.

Repeated measures. In many medical situations, as in the case
of administering an anaesthetic agent, it is necessary to monitor a
subject by repeatedly observing vital signs such as heart rate and
blood pressure at specified intervals. In this case, each subject can
be regarded as level of a factor and a two-way ANOV A can be
done. The second factor will be the group, for example, patients
receiving two or three different anaesthetic agents. For more
complex designs, the method of analysis changes.

Special caution is required in the case of repeated measures.
ANOVA for repeated measures requires not only uniform vari-
ance but also uniform co-variance (or correlation) between each
pair of repeated measures. If n is large, small differences are
negligible but the differences could be unduly large in some cases.
Those measurements close in time may be highly correlated as
compared to those widely separated in time. The correlation
between heart rate (HR) after 1 minute and 5 minutes after
anaesthesia would be higher and the HR after 1 minute and 30
minutes poorly correlated. If the correlations are really unequal,
adjustments may be needed, especially if n is small.

• A problem in the comparison of three or more groups by criterion F is that its significance indicates only that a
difference exists. It does not tell exactly which group or groups are different. Further analysis, called multiple
comparison, is required to identify the groups that have a different mean. This is discussed below.

• ANOVA is a procedure based on means. Any means-based procedure is severely disturbed when outliers are
present. Prior to using ANOVA, ensure that there are no outliers in your data. If there are any, examine if they can
be excluded without affecting the conclusion.

• Random sampling is required, as always, for validity of conclusions from ANOVA F-test.
• Important assumptions for validity of ANOVA are (i) Gaussian pattern, (ii) homoscedasticity, and (iii) independence.

The assumption of Gaussian pattern is not a strong requirement. ANOVA F-test is quite robust to minor
departures from Gaussian pattern. When the pattern is really far from Gaussian, particularly when n is small, it is
advisable to use non-parametric methods.

F-test also requires that the variance in different groups is nearly the same. This property is called homoscedasticity
and can be checked by the Hartley's Fmax test.' If the pattern is not Gaussian, Hartley's test cannot be used.
Transformation of the data, such as logarithm (In y), square tV) and square root (-Jy) are tried in such a case.

The assumption of independence of observations is the most serious requirement for validity of ANOVA F. This
is violated particularly in cases where serial observations are taken and the value of an observation depends on
what it was at the preceding time. A different set of methods, called hierarchical or repeated measures, are generally
applied for analysis of such data.

• Extension of ANOVA to three or more factors is straight, with similar main effects and interactions as in two-way
ANOVA. However, there would now be several two-factor interactions, three-factor interactions, etc. Their details
are beyond the scope of this article. Interested readers may consult Lindman."

• It is desirable that higher-order interactions are tested before lower-order ones, since it is difficult to attach a meaning
to the lower-order interactions when higher-order interactions are present.
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MULTIPLE COMPARISONS: BONFERRONI AND TUKEY
TESTS
Once the overall significance is indicated by the F-test, the next
step is to identify the groups that are different from one or more
of the others. This requires pair-wise comparisons. If there are
four groups, the comparisons are between group 1 and group 2,
group 1 and group 3, group 1 and group 4, group 2 and group 3,
group 2 and group 4, and group 3 and group 4. These are a total
of six comparisons called multiple comparisons. Means in two
groups are generally compared by Student's t-test. However,
repeated application of this test at, say, 5% level of significance
on the same data, increases the total probability of Type I error to
an unacceptable level. If there are 15 tests, each done at 5% level,
then the overall (experiment-wise) Type I error could be as high
as 1-(1-0.05)15= 0.54. Compare this with the desired 0.05. To
keep the probability of Type I error within a specified limit such
as 0.05, many procedures for multiple comparisons are available.
Each of these is generally known by the name ofthe scientist who
first proposed that test. Among them are Bonferroni, Tukey,
Scheffe, Newman-Keul, Duncan and Dunnett." The last is used
specifically when each group is to be compared with the control
only.

The Bonferroni and Tukey procedures are commonly used in
medical and health literature and, in our opinion, are also the most
suitable ones. These procedures test for differences in multiple
groups and at the same time, ensure that the probability of Type
I error does not exceed the desired level a.

Bonferroni procedure
In this procedure, each comparison is done by using Student's
t-test but a difference is considered significant only if the corre-
sponding P-value is less than alH where H is the number of
comparisons. If there are four groups and all pair-wise compari-
sons are required, then H=6. A difference would be considered
significant at 5% level if P<0.05/6, i.e. if P<0.0083. This proce-
dure is efficient when the number of comparisons, i.e. H is small.

Tukey test
This is best suited when the interest is in all pair-wise compari-
sons. The procedure works in a slightly different manner. We have
not provided the details.

Many statistical packages would perform Tukey test or other
multiple comparison procedures at the specified level of signifi-
cance. They will also indicate which groups, if any, are signifi-
cantly different from others. Tukey test for multiple comparisons
may sometimes give results at variance with the results of the
F-test. It is possible that the F-test is significant but none of the
pair-wise comparisons is significant. Conversely, the F-test may
not show significance but comparison for a specific pair may still
be signi-ficant. This happens because both require a Gaussian
pattern but the underlying distribution may not be exactly Gaussian.
They behave differently for a departure from this pattern. The
problem may arise more frequently for a small n than for a large
n because a large n is an insulation against violation of the
Gaussian pattern in most cases.

NON-PARAMETRIC TESTS FOR NON-GAUSSIAN
CONDITIONS
We continue with the set-up where the response is quantitative,
practically continuous, and the interest is in comparing two or
more groups. If n is small and the underlying distribution of the
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Group ABC 0

~

FIG 2. Distribution in four groups different in location only

response variable does not follow aGaussian pattern, non-parametric
methods, also called distribution-free methods, are needed for com-
parison. This can happen when we study aquantitative variable in a
restricted class of subjects, for example, studying duration oflabour
atthe time ofchildbirth, blood glucose level indiabetics, haemoglobin
level in anaemics, etc. The distribution pattern here can be highly
skewed.

The term non-parametric method implies a method that is not
for any specific parameter. Student's t-test, for example, is a para-
metric method because it is concerned with a parameter, namely,
the mean. In the case of non-parametric methods, the hypothesis
is concerned with the pattern of the distribution as in the good-
ness-of-fit test, or with some characteristic of the distribution of
the variable such as randomness and trend. More commonly,
though, the interest would be in location of the distribution with-
out specifying the parameter. This is illustrated in Fig. 2, where the
distributions are identical but are different with respect to location
only. Location shift is clear and there is no need to mention mean
or median or any such parameter in this case.

When Gaussian conditions are present, performance of non-
parametric tests is not as good as Student's t-test or ANOVA
F-test.

Comparison of two groups: Wilcoxon tests
As in the case of Student's r-test, the comparison of two groups
can be done in two types of situations-paired and unpaired. Non-
parametric methods for these situations are different.

SITUATION I-PAIRED DATA

Sign test: Sign test is one option in case of paired data. The only
information it utilizes is the direction of difference, whether
negative or positive, within pairs. Under the null hypothesis that
there is no difference, the negative sign is as likely as the positive
sign. Thus, Ho: 1r=Y2, where 1r is the probability of, say, the
positive sign. The test can be carried out by calculating the
binomial probability under this H .

Sign test is considered inadeqaute because it ignores the
magnitude of difference. However, there are situations where
only sign is important and the magnitude can indeed be ignored.
This can happen, for example, in a behavioural problem where a
judgement on 'greater than' or 'less than' between pairs of
performances can be easily made but not about the magnitude of
difference. In an iron supplementation programme for antenatal
women, the interest may lie in responders who show an increase
in the Hb level in excess of say, 0.5 g/dl and not in the actual
amount of increase. However, such considerations convert the
quantitative data to qualities, and thus compromise the power of
the procedure to detect a difference.

Wilcoxon signed-rank test for matched pairs. If the magnitude
as well as the direction of the differences is important, the
Wilcoxon signed-rank test is a more powerful test. This test gives
more weight to a pair that shows a large difference relati ve to a pair
that shows a small difference. The test criterion Ws is based on the
ranked value of the differences after excluding ties. 7 The test is not
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applicable when n<5. Gaussian approximation can be used when
n~20.

SITUATION 2-INDEPENDENT SAMPLES

The two independent samples counterpart of the Wilcoxon test is
called the Wilcoxon rank-sum test.' The rank-sum test for two
independent samples will not give any statistical significance at
5% level if either nJ or nz is less than 4. When any of these sample
sizes is 10 or more, the Gaussian approximation can be invoked.

Comparison of three or more groups-Kruskal-Wallis test
(non-Gaussian distribution, small n)
Consider an example of cholesterol level in isolated diastolic
hypertensives, isolated systolic hypertensives, 'clear' hypertensives
and control. All subjects are adult women of medium build and the
groups are matched for age. They all belong to the same socio-
ethnic group. Thus, the factors that may affect cholesterol level
are controlled to a large extent. It is expected that the pattern of
distribution of cholesterol level in different hypertension groups
would be the same but not Gaussian. One or more group may have
measurements higher or lower than the others. The objective is to
find whether or not the differences between groups are statisti-
cally significant. Since the underlying distributions are notGaussian
and if, in addition, the number of subjects in different groups is
also small, the conventional ANOVA cannot be used.

The non-parametric Kruskal-Wallis test is the right method for
such a set-up. Interested readers may consult Hollander and
Wolfe? for the exact methodology. The non-parametric method
for two-way tables is called Friedman's test. This is also available
in Hollander and Wolfe.'

Various tests used for comparing quantitative data under
different conditions are summarized in Table I. This will help in
selecting a proper test for the type of data and the problem in hand.

TESTING FOR THE PRESENCE OF MEDICALLY
IMPORTANT DIFFERENCE IN MEANS
The null hypotheses discussed so far are for no difference. When
this Hois rejected, the only conclusion reached is that a difference
is present. No inference can be deduced from the magnitude of
difference. The difference could be so small that it has no clinical
implication or could be large enough to be medically important.
This uncertainty is tackled by setting up an Ho that specifies the
magnitude of difference. Consider the following examples:

1. When can a new antihypertensive drug be considered clinically
effective, i.e. if it results in an average decrease in diastolic
blood pressure of at least 2 mmHg, 5 mmHg, 8 mmHg or 10
mmHg?

2. An iron supplementation programme in adolescent women is
organized. After intake of the supplement for 30 days, the
mean Hb level rises from 13.6 g/dl to 13.8 g/dl. Is this average
gain of 0.2 g/dl sufficient to justify the programme? What gain
can be considered enough to justify the expenditure and efforts
in running the programme-O.5 g/dl, 1 g/dl or more?

3. The normal intraocular pressure (lOP) in healthy subjects
when measured by applanation tonometry is 15.8 (SD 2.5)
mmHg. In glaucoma, it is elevated. In a group of 60 patients
with primary open-angle glaucoma, suppose the average lOP
was 22.7 (SD 4.5) mmHg. After treatment with a new beta-
adrenergic blocker, it came down to 19.5 (SD 3.7) mmHg. This
reduction is statistically significant but the reduced level in the
treatment group is still higher than the level in healthy subjects.
Is this reduction still clinically important? What kind of
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TABLEI. Statistical procedures for test of hypothesis on means or
locations

Set-up Conditions Main criterion

Comparison of Paired
two groups -Gaussian Student's t

-non-Gaussian
5!>n!>19 Wilcoxon signed-rank W,
20!>n!>29 W, referred to Gaussian Z
n~30 Student's t
Unpaired
-Gaussian Student's t

Pooled variance when cr/=cr/
Separate variance when crl~/

-non-Gaussian
nl, n2 between (4,9) Wilcoxon rank-sum W

R

nl, n2 between (10,29) WR referred to Gaussian Z
nl' n2~30 Student's t
Cross-over design
-Gaussian Student's t (paired)
-non-Gaussian Not discussed

Comparison of One-way layout
three or more -Gaussian ANOVAF
groups -non-Gaussian

n!>5 Kruskal-Wallis H
n~6 H referred to Chi-square
Two-way layout
-Gaussian ANOVAF
-non-Gaussian
J!>3, K!>13 Friedman S
Larger J, K S referred to Chi-square

Multiple -Gaussian Tukey Q
comparisons -non-Gaussian Not discussed

difference from the normal level of 15.8 mmHg is clinically
tolerable-O.5 mmHg, 1 mmHg, 2 mmHg or higher?

In all such problems, the clinician needs to decide the mini-
mum acceptable or tolerable difference to justify intervention. A
method similar to those already discussed can be adapted to test
whether or not such a medically important difference is present.

Equivalence tests
We are now in a position to discuss what are called equivalence
tests in pharmaceutical literature. The primary aim of these tests
is to disprove a null hypothesis that two means, or any other
summary measure, differ by aclinically important amount. Equiva-
lence tests are designed to demonstrate that no important differ-
ence exists between a new and the current regimen. They can also
be used to demonstrate stability of a regimen over time, equiva-
lence of two routes of dosage, and equipotency.

Equivalence can be demonstrated either in the form of 'at least
as good as the present standard' or as 'neither better nor worse
than the present standard'. The former is called clinical equiva-
lence and the latter is called bioequivalence. In the case of clinical
equivalence, the alternative hypothesis is one-sided, while in the
case of bioequivalence it is two-sided. The latter can help to
demonstrate that the dose of the drug delivered by the new route
is neither higher nor lower than that delivered by the standard
route. This is a typical quality control equipotency or bioequiva-
lence goal.

An equivalence study may have two independent groups,
paired groups or a cross-over design. If the outcome is a quanti-
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tati ve variable, the null hypothesis is Ho:)1J-)12=)10but can also be Ho:
)1 J-)12=0. Sometimes the interest is in the ratio of means instead of the
difference. In that case, Ho:)1/ )12=tJ.where tJ.could also be one. After
logarithm, this reduces essentially to the former case. These hypoth-
eses can be tested by the methods already described.

•

THE NATURE OF STATISTICAL INFERENCE
Let us re-emphasize that nearly all information in health and medicine
is empirical in nature because it is gathered from samples, which by
themselves are a big source of uncertainty. Sample size also plays a
dominant role in statistical inference. Inference from a test ofhypoth-
esis procedure can be drawn with minimal chance of error when n is
large. However, a side-effect of a large n is that a very small difference
can become statistically significant. This difference may or may not be
medically significant. Therefore, caution is needed in drawing conclu-
sions from statistical significance. Some of these are explained below:

1. Whether or not'a statistically significant result has any medical
significance
If a drug significantly increases the cure rate of a particular disease
from 70% to 73%, the question of medical relevance is whether this
rise of 3% is worth it. One has to consider the price of the drug,
efforts in procuring it, inconvenience in ingesting it, complying with
the drug schedule and possible side-effects prior to recommending
it for use. On the basis of statistical significance alone, this drug
could not be recommended.

2. Whether or not a plausible medical reason is available for the
observed dijference
Consider a random sample of 24 men and 15 women patients of
leukaemia. Suppose 4 men and 7 women survive for 5 years. The
difference in their survival rate is statistically significant since P is
found to be less than 0.05 for one-sided Hl. However, no
worthwhile reason may be available for this difference in their
survival rate. Note that when the level of significance is 5%, there
is a 1 in 20 chance that false significance is obtained. On the other
hand, there might be factors, so far unknown, that could account
for such a difference and this indeed could be real. For example,
an inborn resistance in women, which leads to their higher life
expectancy, can be an explanation. Statistical significance without
proper medical explanation is rarely useful. However, a medical
explanation may not be immediately available and may emerge
later.

3. Whether or not the P-value obtained is sufficiently small
While the convention is to use a threshold of 0.05 to label a

153

P-value small or large, this is not uniformly applicable in all cases.
In cases where the consequence of accepting H, can be grave, a
P-value of 0.01 or less should be used. On the other hand, an
inflated threshold such as 0.10 can also be used as in behavioural
research.

4. Whether or not multiple statistical tests are used on the same
group of subjects
Procedures mentioned in this article are applicable to only one
variable at a time. If you measure arterial blood gas HC03,

PC02 and P02 in asthma patients and observe statistically
significant (P<0.05) alteration in all three parameters indivi-
dually, then any joint composite conclusion on all three of
them should not be drawn. Multivariate methods are required
when the variables are to be considered simultaneously. The
results obtained in multivariate set-ups are not necessarily the
same as those obtained by multiple tests on individual variables.

A distinction has to be made between significant, real and
important differences. We have already said that a very large n can
make a medically unimportant difference statistically significant.
A statistically significant difference is very likely to be real though
there is a small chance that it is not. On the other hand, if n is small
a real difference may not be statistically significant. Similarly, a
large and medically important difference can also be statistically
not significant if n is not sufficiently large. A real difference, if it
is small, such as 3 mg/dl in average total plasma cholesterol bet-
ween a treatment response in men and women, can be medically
unimportant or of no prognostic consequence. Also, small and
large values together can produce a middling kind of mean.
Similarly, a large variation between individuals can mask the
difference between two or more groups. Averages can be decep-
tive, and there is always a need to be cautious while interpreting
them.
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